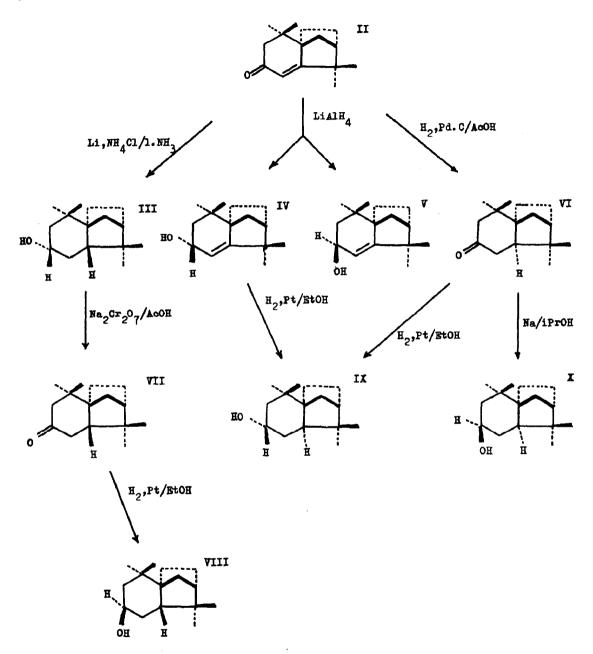
Tetrahedron Letters No. 36, pp 3865 - 3868, 1972. Pergamon Press. Printed in Great Britain.

STERBOCHEMISTRY OF ISOLONGIFOLENE ALCOHOLS

D.V. Banthorpe Department of Chemistry , University College , Gower Street , London W.C.L. and A.J. Curtis and W.D. Fordham Bush Boake Allen Ltd., Carpenters Road , Stratford , London E 15 .


(Received in UK 26 July 1972; accepted for publication 8 August 1972)

Recent studies of the conversion of isolongifolene epoxide (isolongifolene,I) into 8-oxo-isolongifolene disagree on the assignment of the stereochemistry at C(7). The epoxide has been assigned ^{1,2} the β configuration but this conclusion has been contested as a result of degradation of this compound to a fenchol derivative and spectral investigation of this ³.

We have prepared all the structural isomers of 9-hydroxy-isolongifolene, 9-hydroxy-isolongifolane, and 9-oxo-isolongifolene by methods precluding skeletal rearrangements, and our conclusions as to the sterochemistry of addition to the C(7) -C(8) double bond have relevance to this dispute.

Dreiding models suggest that 9-a-hydroxy-isolongifolene in its more stableconformation has a <math>C(9) - H bond that makes dihedral angles of about 90, 180, and 60° with the planes occupied by the C(8) - H and the two C(10) - H bonds. The alternative conformation is less favoured as it introduces a <u>gauche-butane interaction</u> at the a face, in addition to a 1,3-interaction between the <u>pseudo-axial</u> C(9) - OHgroup and the a-methyl group at C(11).

 $9-\beta$ -Hydroxy-isolongifolene can exist in two conformations; one has the plane containing C(6), C(1), and C(2) approximately bisecting the angle between the methyls linked to C(11), as in 9-oxo-isolongifolene; but this conformation is destabilised by 1,3-interactions between the <u>pseudo-axial</u> C(9) - OH and the methyl at C(11). The other conformation has two rear <u>gauche</u> -butane interactions between the methyls linked at C(11) and the C(1) - C(6) and C(5) - C(6) bonds, but the transannular 1,3 interaction is now relieved as the OH group becomes <u>pseudo-equatorial</u>.

Reduction of 9-oro-isolongifolene (II) with LiAlH, gave two a-B unsaturated alcohols (24 : 76 w/w) . The major product (m.p. 94°, i.r. bands at 3,300, 1,668 cm⁻¹, molecular weight from mass spectra 220 : all compounds also had satifactory elemental analyses) had an n.m.r. signal for CHOH as an eight-line multiplet (centred at § 4.00; J (β 9H - alOH), 9.3 Hz; J (β 9H - β 1OH), 6.0 Hz ; J (69H - 8H) , 2.4 Hz) . This represents vicinal dihedral angles of 170, 30, and 55° respectively. The C(8) - H signal is a doublet (centred at 55.00; J (8H - β 9H), 2.4 Hz). These measurements are consistent with 9-a-hydroxy-isolongifolene (IV) in the conformation with the C(9) - OH bond pseudoequatorial. The minor product (m.p. 71°, i.r. bands 3,400, 1668 cm⁻¹; molecular weight from mass spectra 220) has an n.m.r. signal for CHOH as an eight-line multiplet (centred at 6 3.97, J (a9H - 8H), 4.5 Hz; J (a9H - a10H), 4.0 Hz and J ($a9H - \beta 10H$) 3.0 Hz). These represent dihedral angles of 35, 45, and 55° respectively. The C(8) - \underline{H} signal is a doublet at § 5.12, J (8H - a9H), 4.5 Hz. These results are consistent with $9-\beta-hydroxy-isolongifolene (V)$ with the C(9) - OHbond <u>pseudo-axial</u>. Reduction with NaBH_A, both alone and with added triethylamine⁴ gave the same proportions of products , but reduction with NaAlH_(OCH_OCH_OCH_), gave the reverse (82 : 18 w/w) ratio . It is likely that the product proportions in the LiAlH_A and NaBH_A reductions are governed by eclipsing effects 5 whereas those in the last reduction are governed by bulk steric effects ; this is consistent with the preferred approach of the last bulky reagent from the least hindered side to give the main product . In support , equilibration of the alcohol (V) with base in the presence of benzophenone gave a,β alcohols (94 : 6 w/w).

Lithium - ammonia reduction of (II) gave a saturated alcohol with n.m.r. signal for $C(9) - \underline{H}$ as a broad multiplet (centred at \checkmark 3.70). Dichromate oxidation of this and hydrogenation (Pt/EtOH) resulted in an axial alcohol (m.p. 99-100°) with a n.m.r. signal for C(9) - H as a narrow multiplet (centred at \checkmark 4.05).

Hydrogenation of (II) (Pd.C/AcOH) gave a saturated ketone (m.p. 60°); further hydrogenation (Pt/EtOH) of this formed a saturated alcohol (m.p.). The latter had a n.m.r. signal for C(9) - <u>H</u> as a narrow multiplet (centred at § 4.10). Reduction of the above saturated ketone (Na/iPrOH) gave the corresponding equatorial alcohol with n.m.r. signal for C(9) - <u>H</u> as a broad multiplet (centred at § 3.70).

The four 9-hydroxy-isolongifolanes were all different (i.r., n.m.r., m.p., m.s., and g.c. characterstics. Hydrogenation of (IV) (Pt/EtOH) gave a saturated alcohol (A) identical with the axial alcohol prepared by hydrogenation of (II) with Pd.C/AcOH and the reduction of the resulting saturated ketone with hydrogen over Pt. The C(7) - H bond (α or β) in all isolongifolanes must be axial to the ring containing the C(7) - C(8) bond (from Dreiding models), and from the previous discussion the configuration at C(9) of the unsaturated alcohol is known; the configuration at C(7) must therefore be a, and so the saturated alcohol (A) must be 9-a-hydroxy-7-a-H-isolongifolane. The stereochemistry of the series of reductions may thus be written as in the diagram. These assignments are consistent with results from independent crystallographic studies on glycols formed from nor-C(11)-methyl-isolongifolenes⁶.

Our results indicate that cis-addition to the C(7) - C(8) double bond in hydrogenation occurs from the a face (of structure II)⁺ and so support the revised conclusions ³ as to the stereochemistry of the isolongifolene epoxides .

÷

Note The projection of isolongifolene in Dev's publications is the reverse of the projection used in this paper.

ACKNOWLEDGEMENTS

We thank the Directors of Bush Boake Allen Ltd. for permission to publish this paper. We wish to thank Mr. R. Duprey , Mr. J. Janes , Mr. V. Skeels , and Mr. P. Steer for analytical assistance .

REFERENCES

- T.S. Santhanakrishnan , R.R. Sobti , U.R. Nayak , and Sukh Dev , Tetrahedron , 1970 , <u>26</u> , 657 .
- 2) L.K. Lala, J.Org. Chem., 1971, <u>36</u>, 2560.
- 3) E.H. Eschinasi, G.W. Shaffer, and A.P. Bartels, Tetrahedron Letters, 1970, 3523
- 4) W.M. Jones and H. Wise , J.Amer. Chem. Soc. , 1962 , 84 , 997 .
- 5) N. Cherest, and H. Felkin, Tetrahedron Letters, 1968, 2205.
- 6) Dr. R. Ramage, Liverpool University, Personal communication.

3868